Lava Blog
Introduction of rapid prototyping and production: 3D printing, CNC machining, Sheetmetal Stampling, Plastic Moulding and more…
Shapeways ceases operations and files for bankruptcy
Shapeways has ceased operations and filed for bankruptcy ‘after considering all strategic alternatives. The publicly listed…
Revolutionizing Healthcare-The Pioneering Advantages of 3D Printing in Medical Application
Introduction In the realm of healthcare, innovation is not just a buzzword. It’s a life saving force. Among the myriad of technological advancements reshaping medical applications, 3D printing, or additive manufacturing, stands as a beacon of transformative potential. This technology, by enabling the creation of intricate, personalized structures layer by layer from digital models, is pushing the boundaries of what is possible in surgical planning, prosthetics, tissue engineering, and more. This article delves into the remarkable advantages 3D printing brings to the medical field, illustrating its role as a game-changer in patient care. 1. Precision in Surgical Planning Gone are the days of relying solely on 2D imaging for surgical planning, 3D printing allows for the production of exact replicas of a patient’s organs or bones, offering surgeons a tangible, scale model to study and plan procedures. These models facilitate a deeper understanding of complex anatomical structures, improving surgical precision and reducing operation times. In neurosurgery, for instance, a 3D printed brain model can aid in navigating around delicate blood vessels, minimizing risks and enhancing outcomes. 2. Personalized Prosthetics and Orthotics Custom fit is no longer a luxury but a standard in prosthetics and orthotics thanks to 3D printing. Traditional methods often involve lengthy fitting processes and high costs. Conversely, 3D scanning combined with 3d printing technology can create perfectly tailored devices quickly and at a fraction of the cost. Patients, especially children who outgrow their devices rapidly, benefit from faster turnaround times and improved comfort, functionality, and aesthetics. 3. Advancements in Tissue Engineering and Regenerative Medicine Perhaps the most futuristic yet promising aspect of 3D printing lies in its potential for bioprinting – the fabrication of living tissues and even organs. Researchers are making strides in using bioinks, composed of living cells and biomaterials, to print structures like skin, cartilage, and even heart tissue. This breakthrough holds the key to addressing organ transplant waiting lists, as well as facilitating drug testing and disease modeling on realistic biological tissues. 4. Education and Training The tactile nature of 3D-printed anatomical models is revolutionizing medical education. Students and professionals alike can now study detailed replicas, enhancing their understanding of human anatomy beyond textbooks and computer simulations. This hands-on learning experience fosters better spatial awareness and surgical skills, preparing the next generation of healthcare providers for real-life surgical scenarios. 5. Cost-Efficiency and Accessibility While initial setup costs can be high, 3D printing in the long run promotes cost-effectiveness by reducing waste, enabling on-demand production, and facilitating local manufacturing of medical equipment. This is particularly impactful in remote areas or developing countries where access to specialized medical devices can be limited. By decentralizing production, 3D printing can bridge healthcare gaps and improve global health equity. Conclusion 3D printing is not merely an incremental improvement in medical technology. It is a paradigm shift. Its ability to personalize treatment, enhance surgical precision, push the frontiers of regenerative medicine, revolutionize education, and promote accessibility, underscores its status as a cornerstone of modern healthcare. As technology continues to evolve, we can only anticipate further innovations that will redefine what is achievable in healing and restoring human health. The future of medicine, quite literally, is being printed before our eyes.
Steam smoothing: an effective surface treatment process in 3D printing
As the demand for 3D printed parts increases, achieving a high quality surface finish has become essential. Therefore, post-processing of 3D printed objects is very important to enhance aesthetics and mechanical properties. Steam smoothing is an effective option for achieving professional quality results by resolving common problems with visible plies and rough surfaces in 3D printing. What is steam smoothing in 3D printing? Vapor smoothing is a finishing technique for 3D printing that involves exposing the printing component to an evaporating solvent. Also known as “chemical steam smoothing”, “steam polishing”, or “steam fusion”, this process helps eliminate rough surfaces and unsightly layer lines printed out in 3D. The chemical vapors used in this process react with the material surface, causing the material to melt and partially dissolve, resulting in a smoother surface. Using this technology,3Dprinted parts provide a smooth, shiny surface that looks more professional. Steam smoothing can be seen as an excellent finishing option that adds significant value to 3D printing. The technology is widely used in the automotive and aerospace industries, where parts must be as smooth and perfect as possible for optimal function and aesthetics. How does steam smoothing work? Steam smoothing is an efficient and effective method of achieving a smooth surface finish on a variety of materials without removing any material. It uses finishing agents and controlled chemical melting to achieve the desired results. Maintaining proper temperature and pressure control during this process is essential to achieve the desired results while avoiding any damage to the workpiece. The following is a step-by-step guide on how the fully automatic smoothing process works: Place the workpiece in a sealed chamber with finishing agent (typically FA 326). This finishing agent is usually used for various plastic materials, but different finishing agents can be used depending on the material being processed.Place the workpiece in a smoothing chamber and heat the reagent to a certain temperature to create steam around the part. Maintaining temperature and pressure control is essential to ensure uniform steam distribution on the surface.Vapour adheres to the part surface to form a controlled chemical melt. This melting reduces the peaks and valleys of the surface by liquefaction and redistribution of the material, resulting in a smoother surface.Chemical melting also increases the gloss and gloss of the material. The degree of gloss enhancement depends on the processing parameters and the finishing agent.Once the reagent has completed its work, the smoothing chamber is heated to remove the vapors and finishing agent and then collected in drums. The workpiece is free from residues and no material is removed during this process.After finishing, the workpiece may be subjected to a secondary treatment such as staining, painting or any other surface treatment. Technology and material types available Vapor smoothing is widely used in a variety of 3D printing technologies, polymers and elastomers. This technology can be applied to a variety of 3D printing materials, most commonly PA 12 and PA 11. Vapor melt after-treatment techniques can be combined with staining to obtain smooth, colored parts. Benefits of steam smoothing 3D printing has revolutionized manufacturing to produce complex parts with complex geometries. However, with the development of technology, improving the surface finish of printing components remains a challenge. This is where this post-processing technique significantly enhances the surface effect of 3D printed parts. Its main advantages are as follows. Improved surface finish…
Finishing of the 3D Printed Parts
At present, 3D printing technology has been applied in many fields. Most 3D printed products…
3D Printing Technologies Overview
1.What is 3D Printing or Additive Manufacturing? The objects produced by 3D printing processes can…
3D Printing Soft Material Parts
With the development of 3D printing technology, new materials and technologies continue to appear. More…
Laser Cutting Introduction
This is a high precision CNC process that can be used to cut, etch, engrave…
Deep Drawing Introduction
In this cold metal forming process, the part is made by a punch that forces…
Chemical vapor polishing of 3D printed parts
SLS(Selective Laser Sintering) 3D printed parts have rough surface and grainy feeling, and cannot obtain…
Plastic Materials for CNC Machining
Plastic Materials for CNC Machining 1. ABS (Acrylonitrile Butadiene Styrene, also called Cycogel or Absylux) ABS is one of the most common thermoplastic materials with good mechanical properties, excellent impact strength, high heat resistance and good machinability. ABS has a low density and is ideal for lightweight applications. CNC machined ABS parts are often used as prototypes before injection molding for mass production. ABS can be easily milled from block into designed shape, with medium mechanical strength, ideal for quick design verfication, especiall for supporting frames, enclosures. ABS also is well-known for it’s easy to get painted with different colors, or can be plated by regular electroplating process. No need to mentioned, if can be sand blasted to to get matte texture from fine to tough, and can also be polished to certain degree of glossy finish. Thus, if you are looking for design verfication of multiple color and texture, ABS is the one you should try. The nature color of ABS usually comes in white or yellowish white, or so called rice yellowish. ABS’s typical density: 1.00-1.05 g/cm3 2. Nylon (Polyamide, or PA, also called Perlon, Capron or Celanese) Nylon, also known as polyamide (PA), is a thermoplastic often used in engineering applications because of its excellent mechanical properties, good impact strength, and high chemical resistance and super low abrasion resistance. But it absorbs water and moisture easily, so be careful is you use if for some dimension senstive parts, which is not suggested normally. …
Metal materials commonly used in CNC machining
CNC Machining Materials Metal materials commonly used in CNC machining When selecting materials for parts…
Pros and Cons of CNC Machining
Punch holes Industrial aluminum profiles have a variety of connection methods, which need to be punched according to different connection methods. The punching methods include through holes and stepped holes. (1) Through hole: Mainly used for the fastened connection of common bolts (semi-round head). (2) Step hole: Mainly used for special connectors (built-in connectors). Fastening connection is a high-tech process commonly used in CNC machining of aluminum profiles. 3. Aluminum profile tapping. Aluminum profile tapping is what we often call tapping. The processing of aluminum profiles is to tap the end tapping holes of the aluminum profiles according to the technical requirements of the design drawings, which are used for the fastening connection of the later frame. 4: CNC milling machine. Traditional aluminum profile frame assembly does not require CNC milling, but in special cases, non-standard components and profiles need to be CNC machined according to technical needs. (2) Advantages and disadvantages of CNC machining: 1. Advantages: ①.Reduce the number of tooling: Reduce the number of tools, machining parts with complex shapes does not require complex tools. In order to change the shape and size of the part, it is only necessary to modify the processing program of the part, which is suitable for the development and transformation of new products. ②. Stable processing quality:…